Pattern recognition and machine learning

(Information science and statistics)
Note: 
Introduction.- Probability distributions.- Linear models for regression.- Linear models for classification.- Neural networks.- Kernel methods.- Sparse kernel machines.-Graphical models.- Mixture models and EM.- Approximate inference.- Sampling methods.- Continuous latent variables.- Sequential data.- Combining models

Pattern recognition and machine learning (Engelsk)

Grundigt bearbejdet (Engelsk)
6336112016Christopher M. Bishop
Springer, 20069781493938438